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ABSTRACT: Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when
grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so
that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy
(NIRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400−2498 nm) was used as well
as specific spectral ranges within the full spectral range, i.e., visible (400−750 nm), shortwave (800−1100 nm) and near-infrared
(NIR) (1100−2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient
of determination (R2) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R2 = 0.824
with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best
model (NIR spectra) produced a R2 = 0.847 and standard error of calibration (SEC) = 0.050% and a R2 = 0.829 and SEP =
0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific
wavelengths 2034 and 2458 nm were of interest, with the former associated with CO carbonyl stretch and the latter associated
with C−N−C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard
deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results
indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding
programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.

KEYWORDS: Dhurrin, feed quality, hydrogen cyanide, NIRS, wavelengths

■ INTRODUCTION
Cyanogenesis is the process whereby plants release hydrogen
cyanide (HCN) from in situ cyanide-containing compounds.
While cyanogenic glycosides are nontoxic, in the presence of
certain enzymes, these compounds are hydrolyzed to produce
HCN, which is highly toxic. The development of HCN may
play a role in plant defense against herbivores.1 In sorghum, the
cyanogenic glycoside dhurrin is synthesized from the amino acid
tyrosine in a series of steps catalyzed by two P450s and a UGT-
transferase. Dhurrin is broken down to HCN when it is mixed
with specific β-glucosidases (dhurrinase).2 Dhurrin and dhurrinase
are spatially separated in the living plant, such that HCN is only
released when the tissue is damaged, consistent with its putative
role in herbivore defense. The amount of cyanide able to be
released from dhurrin is known as the cyanide potential (HCNp).
Near-infrared spectroscopy (NIRS) is an analysis tool used

routinely in agricultural sciences. Since its development in the
1950s, it has become the main work-horse for cereal-based
plant breeding programs,3 as well as finding applications in
forage testing,4 remote sensing on plants for growth,5 and crop
nutrition status.6 Specifically, in cereal plant breeding applications,
NIRS has been mainly used in crops, such as wheat or barley,
where there is a quality specification on commercially delivered
crops.3 For grain sorghum, no target quality specifications exist,

although the opportunity to predict feed traits exists using
NIRS.7 In forage sorghum, NIRS has been used to estimate
characteristics, such as chemical composition and feed quality.8 To
date, there has been one published report describing the NIRS
estimation of the antinutritional factor, namely, HCNp, in forage
sorghum9 using a partial least-squares method.
Recent calibration development strategies use a partial least-

squares (PLS) regression approach, i.e., combining all spectral
data, of up to 1050 wavelengths. This approach has been used
successfully in a number of plant-based agricultural applications,
particularly breeding.3 However, it is possible is to use only a few
specific wavelengths [multiple linear regression (MLR)] that are
correlated to the trait of interest.10 The early NIRS instruments
used a limited number of specific filters (specific wavelengths) and
for very few grain traits, such as moisture, protein, and lipid.11

The aim of this study was to determine the suitability of
NIRS to estimate HCNp in forage sorghum. A NIRS calibration
has been reported, and PLS and MLR models were compared
to ascertain if one approach provided a better calibration than
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the other. The development of a NIRS calibration could be
used in a number of applications, including breeding to screen
lines, because NIRS is a high-throughput, low-cost technology,
as well as on the farm for monitoring forage sorghum during
the growing season.

■ MATERIALS AND METHODS
Sorghum Samples. Forage sorghum [Sorghum bicolor (L.)

Moench × Sorghum sudanense Stapf. cv. Superdan] was tested. All
samples were collected in 2008 from near Gatton in the Lockyer
Valley, Queensland, Australia, except two from South Australia,
Australia. A total of 12 additional samples were from an experimental
Sorghum × Sudan line. To ensure that the samples represented a wide
range of HCN, a further 24 samples were taken from hay made in the
same season. Field samples of live plants were harvested, where the

uppermost fully unfurled leaf was collected. The hay samples were all
whole plant samples. Samples were dried at 70 °C and then ground in
a Christie and Norris 200 mm hammer mill, with a 1 mm screen.
Initially, 153 samples were combined and split into calibration (109)
and validation (44) sets. A further 15 samples were used as an
independent test set to test significant differences (p < 0.05) between
calibration models.

Measurement of HCNp. Dhurrin in plant tissue was determined
as described previously,12 by hydrolyzing the cyanogenic glycoside and
trapping the resultant HCN in a well containing 1 M NaOH. Initially,
samples were ground using a Christy and Norris 200 mm cross-arm
mill fitted with a 1 mm screen. The dried and ground samples were
placed in plastic Ziploc bags and stored in a dehumidified cold room at
4 °C. Hydrolysis was achieved by adding 500 μL of β-glucosidase
almond emulsion (0.01%, w/v) (β-D-glucoside glucohydrolase, EC
3.2.1.21, Sigma) in 0.1 M trisodium citrate−HCl buffer (pH 5.5) to
approximately 10 mg of ground oven-dried leaf material in a sealed
glass vial and incubating at 37 °C for 15 h. Cyanide in the NaOH well
was neutralized with acetic acid and assayed. HCN was measured with
a FLUOstar OPTIMA UV/vis absorbance spectrophotometer microplate
reader (BMG LABTECH, Offenburg, Germany) at 595 nm. A total of 1 g
of cyanide (CN) detected by this method is equivalent to 11.6 g of
dhurrin and referred to as HCNp. All samples were tested in triplicate.

NIRS. Ground samples were scanned in a small ring cup in the
NIRSystem 6500 instrument (Foss NIRSystems, Inc., Silver Spring, MD).

Table 1. Summary of HCN in Forage Sorghum Samples
Used

number of
samples

range (%, dry
basis)

mean (%, dry
basis)

standard
deviation

calibration 109 0.021−0.941 0.230 0.156
validation 44 0.036−0.521 0.236 0.129
test set 15 0.022−0.531 0.189 0.160

Table 2. Summary of the Best NIR Calibration Model Statistics

region spectral range (nm) math treatmenta number of factorsb R2 (cal) SECV (cal)c R2 (val) SEP (val) RPD (test)d

PLS
full 400−2498 2,4,4,1 5 0.838 0.044 0.824 0.047 3.4
visible 400−800 2,4,4,1 5 0.712 0.079 0.702 0.092 1.7
SWNIR 802−1098 2,4,4,1 9 0.813 0.056 0.798 0.069 2.3
NIR 1100−2498 1,4,4,1 9 0.826 0.049 0.804 0.051 3.1

MLR
full 400−2498 1,4,4,1 9 0.836 0.051 0.821 0.054 3.0
visible 400−800 2,4,4,1 3 0.525 0.086 0.467 0.121 1.3
SWNIR 802−1098 1,4,4,1 9 0.798 0.056 0.701 0.078 2.1
NIR 1100−2498 2,4,4,1 9 0.847 0.050 0.829 0.057 2.8

aAll calibrations produced the best models with SNV detrend scatter correction. bNumber of factors used in the PLS calibration and number of
wavelengths used in the MLR calibration. cStandard error of cross-validation for the PLS calibration and standard error of calibration in the MLR
calibration. dRatio of SEP (test set) and standard deviation (SD) (test set).

Figure 1. Scatter plot of actual versus predicted values using the best PLS calibration model.
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The calibration software (WinISI V1.6, Foss NIRSystems, Inc., Silver
Spring, MD) for the NIRS instrument was used for all calibration
models using absorbance as a log(1/R) function. Two calibration
methods were used in developing a calibration model for HCN. The
first was a typical approach using the full spectrum (400−2498 nm at 2
nm intervals) in a modified PLS regression model. A number of scatter
corrections were tested, including no treatment, multiplicative scatter
correction, and standard normal variate detrend. Math pretreatments
tested included none, first, and second derivatives. MLR models were
also assessed with the above scatter corrections and premath treatment
combinations using a stepwise regression with a maximum number of 10
terms (9 wavelengths) based on the WinISI software. For both calibration
approaches, full spectra, visible spectra (400−750 nm), shortwave near-
infrared (SWNIR) spectra (800−1100 nm), and near-infrared (NIR)
spectra (1100−2500 nm) were tested. In addition, for all calibration
models, the spectral outlier (global H) was set at 5.000 GH and cross-
validation settings were used, i.e., four groups.
To calculate which model was most accurate from all models

developed, the modified Fearn test was used.13 This method tests the
significance of the differences in standard deviation and bias between
two models based on the residuals for the references and predicted
values for each sample in the tested population. A ratio of standard
error of prediction to standard deviation (RPD)14 was also calculated
to ascertain the potential application of the NIRS models for
application in breeding or industry screening. RPD values of 1 or
less are an indication of an inadequate model. Values greater than 2.5
indicate that the model could be useful for initial screening purposes,
whereas a RPD greater than 5 indicates that the model would be good
for quality control and prediction.

■ RESULTS

One of the main objectives in developing NIRS calibrations is
to ensure that a suitable range of the trait of interest is sampled
and the level of precision in the reference method is acceptable.
Table 1 shows the descriptive statistics and number of samples
for the calibration, validation, and test sets used in this study.
Both sets included samples below and above the HCN range
acceptable for cattle (0.6%). However, the average values for
each set was below the 0.6% threshold, suggesting the range of
values could be expanded to include more samples above the
threshold.

PLS Approach. Two calibration methods were used in
developing a calibration model for HCN. The first was a typical
approach using the full spectrum [400−2498 nm (1050 data
points)] with a modified PLS regression model. The best PLS
model was using the NIR spectra (400−2500 nm), giving a
coefficient of determination (R2) = 0.837 and standard error of
cross-validation (SECV) = 0.044%, using a standard normal
variance (SNV) detrend pretreatment with the first derivative,
4 nm gap, and 4 nm smoothing (Table 2). Figure 1 shows the
scatter plot for the actual versus predicted values from this
model. The use of NIR and SWNIR spectra both produced
reasonable calibrations (Table 2). The R2 for the validation set
using the full spectrum was 0.824, with a standard error of
prediction (SEP) = 0.047%. The RPD was 3.4, indicating that
the predictive model could be used for screening in a breeding
program. All other PLS models produced R2 > 0.66 and RPD
above 1.6. As suggested by Williams and Sobbering,14 these
calibration statistics may be useful for screening in a breeding
program but not for quality testing applications.

MLR Approach. The second calibration model was
developing using a MLR approach, in this case a stepwise
wavelength selection process. The NIR spectra produced the
most accurate calibration with a 2,4,4,1 math treatment and
SNV detrend scatter correction. The R2 = 0.847, and a standard
error of calibration = 0.050%. For the validation set, a R2 =
0.829, with a SEP = 0.057%. The RPD for this model was 2.8,
suggesting that it could also be used for screening in a breeding
program. However, the full spectra and NIR spectra regions
showed potential for providing useful predictions from a MLR
calibration approach with R2 greater than 0.79, SEPs less than
0.080%, and RPDs greater than 2.0.
Nine wavelengths were selected using the MLR model for all

three spectral regions, including the NIR region (Table 3). The
visible region produced a very poor calibration model (Table 2),
with only four wavelengths selected (not shown). The majority of
wavelengths selected were associated with CH bonding (methyl
CH2 or methylene CH3) (Table 3). However, in the full spectral
region and the SWNIR region calibrations, there was one or more
wavelengths associated with NH bonding. These included 776,
2034, and 2068 nm in the full spectral region and 1000 and
1012 nm in the SWNIR region. In the “NIR spectra only” calibra-
tion, six of the nine wavelengths were associated with CH
bonding, while for the remaining three, there was no chemical
assignment (Table 3).
As seen in the loading plots (Figure 2), there was a strong

influence from the visible region in the full spectrum model
(Figure 2a). The first loading explained 60% of the full spectral
calibration. However, when using the visible region only, a poor
calibration was developed, where the first loading (Figure 2b)
explained only 34% of the visible region calibration. The first

Table 3. Wavelengths Selected in MLR Calibrations

region
spectral

range (nm)
wavelengtha

(nm) chemical assignmentb

full 400−2498 776 N−H third overtone
(OT) NH2

628 chlorophyll
2068 NH2

2314 CH2

446 unassigned
546 unassigned
1704 oil
2034 CO second OT
2316 CH2

SWNIR 700−1098 736 O−H third OT OH
888 C−H third OT CH2

948 O−H second OT OH
1056 C−H CB CH2

1012 CONH second OT amide
788 CCH third OT
858 C−H third OT aromatic
1000 N−H second OT NH2

864 CC third OT
NIR spectra
only

1100−2498 2394 no assignment
1152 C−H second OT CH3

1836 C−H CB CH2

1398 C−H CB CH2 CH stretch
+ CH bend

1256 no assignment
2430 no assignment
2302 C−H bend second OT

protein
1228 C−H second OT CH
2458 C−N−C stretch first

OT protein
aWavelengths are listed in order of selection for the MLR model.
bChemical assignments from the WinISI software.
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loading plot for the NIR region is shown in Figure 2c. This
loading explained 63% of the NIR spectrum calibration.
While both PLS and MLR calibrations used wavelengths

associated with nitrogen bonding, two wavelengths from MLR
calibrations were of specific interest. In the full spectrum MLR

calibration, the 2034 nm wavelength was selected (Table 3).
This wavelength is associated with the CO bond and assigned
as a carbonyl stretch second overtone associated with amide I
(urea) (as per the WinISI software). Because the chemical formula
for urea is OC−(NH2)2, it is possible that the covalent bonding

Figure 2. Loading line plot 1 from (a) full spectrum, (b) visible spectrum only, and (c) NIR spectrum only second derivative PLS model.
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between the CN atoms in HCN could result in a similar
chemical stretch to CO. In the NIR spectrum only calib-
ration, the 2458 nm wavelength was selected (Table 3). This
wavelength was assigned as a C−N−C stretch first OT protein
in the WinISI software. These two specific regions have been
highlighted in panels a and c of Figure 2 for the full spectra and
NIR spectra PLS calibrations, respectively.
The modified Fearn test13 was used to note any significant

differences (p < 0.05) between calibrations when predicting the
test set. The results indicated that there was no significant
difference (p < 0.05) between the predicted HCN levels for the
full spectral, “NIR spectra only”, and “SWNIR spectra only” for
both PLS and MLR calibrations. There was a significant
difference (p < 0.05) between the visible spectral region and all
of the other regions from both PLS and MLR calibrations.
There was also no significant difference (p < 0.05) between the
“best” PLS (full spectra) and MLR (full spectra) models.

■ DISCUSSION
In this study, we built NIR calibrations to predicted HCNp.
Two calibration approaches were used, with these being the
typical full-spectral calibration model and a selected wavelength
calibration model. The resultant calibrations showed that both
approaches were similar in predicting HCNp in forage sorghum
samples. Our results, especially for the PLS model for the NIR
spectral region only were comparable to the only other reported
NIRS calibration for HCN,9 in which that study used only the
NIR spectral region only.
From our study, when the full, visible spectra, SWNIR

spectra, and NIR spectra were compared, the best calibration in
terms of R2, SEP, and RPD values was using the full spectrum.
This would suggest that using all wavelengths from the visible,
SWNIR, and NIR regions was the best strategy for building a
PLS calibration for HCN. The loading plots showed the posi-
tive and negative contributions of these regions to the PLS
model. However, despite using the 1050 wavelengths available,
it was possible to build a predictive calibration with a similar
level of accuracy using only nine wavelengths. While for this
study, the best MLR calibration was using the NIR spectra, the
full spectrum calibration, which included visible spectrum wave-
lengths, was similar. This would suggest that, for this type of
sample, including wavelength from the visible and NIR spectral
regions would provide accurate calibrations, regardless of whether
choosing MLR or PLS calibration strategies. The use of fewer
wavelengths provides an opportunity for the development of
specific instruments, which could provide fast estimation in the
field-based instrument to predict HCNp levels or potentially using
remote sensing technologies.
The approach of using fewer wavelengths was considered

specifically for this small chemical molecule. It may not work
for some traits, especially where there may be strong interac-
tions between different chemical species in a complex sample
matrix, for example, wheat dough, which has starch, protein,
and lipid components. However, for chemicals such as HCN,
with a simple chemical structure and, hence, associations with
specific wavelengths, the MLR approach has merit. This has
already been shown where both PLS and MLR models proved
suitable.10

The possibility to use NIRS to predict HCN in forage
sorghum breeding could help in selecting genotypes that in-
herently produce lower concentrations of dhurrin. Other potential
applications include the monitoring of crops to gauge HCNp
levels prior to feeding cattle as well as assessing crops to

understand how the environment influences the expression of
dhurrin. The results of this study have shown the potential to
use NIR to predict the HCNp content in forage sorghum, which
has good economic potential for graziers and plant breeders alike.
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